
M E M O R Y P O I N T E R S

Write Faster Apps with

B Y M A T T H E W C U R L A N D A N D F R A N C E S C O B A L E N A

Write amazingly fast
routines using
a hidden capability
of VB: real pointers
to memory.

VB Pointers
Click & Retrieve

Source

CODE!
t’s a common misconception that Vi-
sual Basic doesn’t have pointers to
memory. Although VB doesn’t allow youI

to declare pointer variables or do pointer
arithmetic, you can find the pointers inside
some VB data types just under the surface. In
fact, it is indeed possible to access a portion
of memory as if it were a regular VB array.
This technique opens up a number of profit-
able opportunities to VB programmers. You’ll
discover that you can write VB applications
that are as fast as C/C++ programs, and solve
problems that have always been thought to
be out of the reach of VB programmers.

If you have ever programmed in a low-
level language, chances are you already have
22 OCTOBER 1997 Visual Basic Programmer’

Francesco Balena is editor in chief of
Visual Basic Journal, the Italian licensee of
VBPJ, and cofounder of Software Design, a
software firm specializing in VB and VC++
add-ons as well as training and consulting.
He is a coauthor of Platinum Edition Using
Visual Basic 5 (Que). Contact Francesco at
fbalena@infomedia.it.

Matthew Curland is a developer on the
Visual Basic team at Microsoft. He is a
coauthor of Object Programming with Vi-
sual Basic 4 (Microsoft Press). To see a
sample of his VB programming work (and
get a really cool object browser), download
a demo version of the Object Navigator tool
from the Demos & Updates page at
www.microsoft.com/mspress. Reach him
at MattCur@Microsoft.com.
some familiarity with memory pointers. It is
nearly impossible to write a nontrivial C
program without using pointers, and on the
average, every other line in an assembly
listing includes an explicit reference to a
memory address. A few higher-level RAD
tools, such as Borland Delphi, offer native
access to memory pointers, although the
pointer manipulation support is not as ex-
tensive as in C and C++. With Visual Basic,
you can’t use pointer variables.

Here’s how memory pointers can be
s Journal
useful: imagine you need to read and modify
all the individual pixels of a bitmap. These
pixels are stored somewhere in memory;
in fact, you can get their addresses easily.
Unfortunately, if you program in pure VB,
there isn’t much you can do with this
address because you have no built-in way
to de-reference the pointer and access the
actual data. This restriction makes intrin-
sic VB code safe from crashes, but puts
artificial limits on memory usage and avail-
able algorithms.
...

a() As Long (Indirect)

s As String (Indirect)

l As Long (Direct)

Data Type

Dim l As Long
Dim s As String
Dim a() As Long
l = 10
s = "Hello"
ReDim a(1)
a(0) = 20
a(1) = 30

62f344

62f340

62f33c

Address

486386

4a3200

10

Data

String 4a3200 Hello

...

SAFEARRAY (Indirect Data) 486386 1 0 4 0 4a0353 2 0

...

Long values 4a0353 20 30

These Variables Store Pointers. VB string, array, and object variables are
indirect. They store pointers to data instead of the data itself. Strings use single

indirection and arrays use double indirection to access data.

FIGURE 1
http://www.windx.com

M E M O R Y P O I N T E R S
A brave VB programmer might suc-
cessfully move all the pixels to a VB array
or matrix for processing, and then put
them back in their original memory ad-
dress. If you are dealing with an 800-by-600
256-color image, that means allocating
about half a megabyte of local data and
copying the contents of the memory block
back and forth from the memory for the
actual bitmap to your local copy. These
crippling inefficiencies could be avoided if
you could access the data where it really
is—right in the bitmap.

You can make your apps run faster in
VB by looking for ways to use pointers
inside VB data types. Data held in VB
variables can be broken down into two
categories: direct data and indirect data.
For direct data—such as Integer, Long,
Currency, or user-defined types—a VB
variable contains the memory location of
the data. For indirect data, the variable
contains the memory location of a pointer
to the data. Indirect types include ob-
jects, strings, and arrays of any type (see
Figure 1).

We will show you how to use the un-
derlying pointer data types in VB to di-
rectly manipulate data at any memory
location. We’ll explore the SAFEARRAY
structure that underlies all VB arrays,
demonstrating how to make a VB array
variable point to arbitrary data.
http://www.windx.com
Use extreme caution when applying these
techniques. VB assumes that it allocated any
data it has a pointer to, but the pointer data
demonstrated here is borrowed, so VB can’t
free it without crashing. All clean-up code
shown is absolutely necessary.

UNLOCKING SAFEARRAYS
A VB array variable holds a pointer to a
SAFEARRAY structure, which looks like this:

Type SAFEARRAY
cDims As Integer
fFeatures As Integer
cbElements As Long
cLocks As Long
pvData As Long

End Type
Type SAFEARRAYBOUND

cElements As Long
lLbound As Long

End Type

A SAFEARRAY structure is always allo-
cated in memory with a fixed number of
SAFEARRAYBOUND structures immedi-
ately following it. The number of bounds
corresponds to the number of dimensions
in the array, and can’t be changed without
destroying and re-creating the SAFEARRAY.
A one-dimensional VB array looks like this:

Type SAFEARRAY1D
Visual Bas
cDims As Integer
fFeatures As Integer
cbElements As Long
cLocks As Long
pvData As Long
Bounds(0 To 0) As SAFEARRAYBOUND

End Type

Let’s review the fields in the
SAFEARRAY type. cDims is the number of
dimensions in the array and always corre-
sponds to the number of bounds. fFeatures
is used to indicate various array proper-
ties, such as whether the data is fixed-size
or points to strings, objects, or variants
that must be freed before the array data is
destroyed. Because we don’t allow VB to
free any of the SAFEARRAYs we construct,
we don’t use fFeatures in this article.

cbElements is the size, in bytes, of a
single element in the array. For example,
a Long array has an element size of four
bytes. As with fFeatures, we don’t discuss
the intricacies of cLocks. pvData is a
pointer to the actual data; it is the pivotal
field for this article. cElements is the num-
ber of elements in an array bound and
lLbound is the number corresponding to
the lower bound of the array.

After you set up the SAFEARRAY struc-
ture, the next step in direct pointer ma-
nipulation is making a VB array variable
point to your data. In other words, given
Type SAFEARRAYBOUND
cElements As Long
lLbound As Long

End Type

Type SAFEARRAY1D
 cDims As Integer
 fFeatures As Integer
 cbElements As Long
 cLocks As Long
 pvData As Long
 Bounds(0 To 0) As SAFEARRAYBOUND
End Type

Type SAFEARRAY2D
 cDims As Integer
 fFeatures As Integer
 cbElements As Long
 cLocks As Long
 pvData As Long
 Bounds(0 To 1) As SAFEARRAYBOUND
End Type

Type SAFEARRAY60D
 cDims As Integer
 fFeatures As Integer
 cbElements As Long
 cLocks As Long
 pvData As Long
 Bounds(0 To 59) As SAFEARRAYBOUND
End Type

Declare Function VarPtrArray Lib "msvbvm50.dll" _
Alias "VarPtr" (Ptr() As Any) As Long

Declare Sub CopyMemory Lib "kernel32" Alias _
"RtlMoveMemory" (pDst As Any, pSrc As Any, _
ByVal ByteLen As Long)

Function ArrayMemory(ByVal arrPtr As Long) As Long
' this procedure should be passed the address
' of a SafeArray structure, as in
' bytes = ArrayMemory(VarPtrArray(myArray))
Dim sa As SAFEARRAY60D, saPtr As Long
Dim i As Long, numEls As Long, cDims As Integer

' retrieve the SafeArray structure
CopyMemory saPtr, ByVal arrPtr, 4
' retrieve the dimension count
CopyMemory cDims, ByVal saPtr, Len(cDims)
CopyMemory sa, ByVal saPtr, _

Len(sa) – 8 * (60 – cDims)
' evaluate the number of elements
numEls = 1
For i = 0 To sa.cDims - 1

numEls = numEls * sa.Bounds(i).cElements
Next
' evaluate total amount of memory
' including the SA structure itself
ArrayMemory = numEls * sa.cbElements + _

(16 + sa.cDims * 8)
End Function
Show Your Byte Waste. When passed the address of the descriptor of an array (any type, any number of dimensions), this
routine returns the total amount of memory taken by the array, including the array descriptor itself. The declarations at the

top are used by all the other listings in this article.

LISTING 1
ic Programmer’s Journal OCTOBER 1997 23

M E M O R Y P O I N T E R S
the variables psa() As Byte and sa As SAFEARRAY1D, how do you
make psa(0) correspond to the first byte of data in the memory
location pointed to by sa.pvData? In C, the variables look like
SAFEARRAY* psa and SAFEARRAY sa, and the assignment code
looks like psa = &sa (we’ll actually use *(&psa) = &sa). In VB,
because direct pointer assignment isn’t supported natively, we
have to call on some helper functions.

The first helper function is VarPtr, which is built into VB5,
although hidden. VarPtr returns the address of any non-array VB
variable, so VarPtr(sa) is equivalent to &sa in C. However, the
VarPtr function doesn’t accept an array variable, so you need to
add an aliased declaration to the VarPtr entry point in the VB
runtime DLL that accepts an array of almost any type. The only
type that doesn’t work is () As String because VB does ANSI/
Unicode conversion on String arrays, but not UDTs containing
strings. An easy workaround is to use an array of a dummy type
that contains a single String element:

Declare Function VarPtrArray Lib _
"msvbvm50.dll" Alias "VarPtr" _
(Ptr() As Any) As Long

Now, VarPtrArray(psa) gives you a pointer to the psa variable
(&psa). You can use the CopyMemory API call to make the final step:

Declare Sub CopyMemory Lib "kernel32" _
Alias "RtlMoveMemory" _
(pDst As Any, pSrc As Any, _
ByVal ByteLen As Long)

'*(&psa) = &sa
CopyMemory ByVal VarPtrArray(psa), VarPtr(sa), 4

Before you make the CopyMemory call, you must make sure that
psa doesn’t currently point to another array. Use the Erase state-
ment if you’re not sure. You must declare your array variable as
variable size—that is, don’t specify dimensions in the Dim state-
ment—or you will leak memory. After you’re done using the array
and before psa goes out of scope, you must clear the psa variable
with a second CopyMemory call to prevent VB from freeing the data.
Be sure to use 0& (a Long), not 0 (an Integer) as the second
parameter:

CopyMemory ByVal VarPtrArray(psa), 0&, 4

You can also use VarPtrArray and CopyMemory to get informa-
tion such as the number of dimensions and size of each element
from an existing SAFEARRAY. You can’t get this data through built-
in VB functions. If you don’t know how to read a SAFEARRAY
structure, you need an error-trapped loop containing a UBound(arr,
n) statement to find the dimensions, and the LenB function to make
a guess as to the size of an array element. LenB is unreliable
because it doesn’t detect packing between array elements:

'psa is any non-empty VB array
Dim sa As SAFEARRAY
Dim saPtr As Long
CopyMemory saPtr, ByVal VarPtrArray(psa), 4
CopyMemory sa, ByVal saPtr, Len(sa)
Debug.Print sa.cDims, sa.cbElements

By simply reading the SAFEARRAY structure associated with
an array, you can learn interesting things. For instance, you can
write a generic function that returns the amount of memory used
by any array, regardless of its type and number of dimensions
(see Listing 1).

Writing such a routine is tricky because you don’t know how
many dimensions the array has. Therefore, you don’t know how
24 OCTOBER 1997 Visual Basic Programmer’s Journal
many SAFEARRAYBOUND records you must allocate and read.
Even if you know that VB arrays support a maximum of 60
dimensions, you cannot simply allocate a fixed array of 60 items
and fill them with a single CopyMemory call, because you can
cause a general protection fault (GPF) merely by reading outside
the block of memory allocated to the SAFEARRAY structure.
Instead, you need two distinct CopyMemory calls: the first one
to get cDims and the second one to read the correct number of
SAFEARRAYBOUND items. Also, in order to work around VB’s
inability to accept As Any arguments in VB procedures, you
must pass this routine the address of an array descriptor, as in:

bytes = ArrayMemory(VarPtrArray(myArr))

A quick word on VB4: all the techniques we discussed so far
work in VB4/32 as well as VB5, except that VarPtr isn’t built into
VB4. But you can declare VarPtr in your VB4 code directly. As
long as you don’t pass the VB4-declared VarPtr function any
strings or structures containing strings, the two calls work the
same.

The techniques up to this point are also usable in VB4/16.
However, 16-bit applications use handled memory with
SAFEARRAYs, so any code using pvData is unlikely to work the
same. In fact, the 16-bit SAFEARRAY structure is slightly differ-
ent. SAFEARRAYs aren’t used in VB3. The VB4/32 declares look
like this:
Sub ArrayAdd(arr() As Long, ByVal increment As Long)
' add a given constant value to all the items
' of a N-dimension array of Longs
Dim sa As SAFEARRAY1D, sa2 As SAFEARRAY60D
Dim saPtr As Long, i As Long, numEls As Long
Dim cDims As Integer

' retrieve information on matrix dimensions
' and number of elements
CopyMemory saPtr, ByVal VarPtrArray(arr), 4
CopyMemory cDims, ByVal saPtr, Len(cDims)
CopyMemory sa2, ByVal saPtr, _

Len(sa2) – 8 * (60 – cDims)
' evaluate the number of elements
numEls = 1
For i = 0 To sa2.cDims - 1

numEls = numEls * sa2.Bounds(i).cElements
Next

' create a temp array and retrieve its SA structure
ReDim temp(0) As Long
CopyMemory saPtr, ByVal VarPtrArray(temp), 4
CopyMemory sa, ByVal saPtr, Len(sa)
' modify the number of elements and pointers to data
sa.pvData = sa2.pvData
sa.Bounds(0).cElements = numEls
' have the descriptor point to our local SA
CopyMemory ByVal VarPtrArray(temp), VarPtr(sa), 4
' add the increment to all elements
' (temp is zero-based)
For i = 0 To numEls - 1

temp(i) = temp(i) + increment
Next
' reset temp() descriptor to the original value
CopyMemory ByVal VarPtrArray(temp), saPtr, 4

End Sub

Process Matrices for Speed. Because multidimensional
matrices are accessed more slowly than monodimensional

arrays, it is often much faster to deal with a large matrix as if it were
a regular array. This routine adds a constant to a matrix of Long (any
number of dimensions): it is twice as fast as using two nested
For…Next loops, and about four times faster when processing three-
dimensional matrices.

LISTING 2
http://www.windx.com

M E M O R Y P O I N T E R S
Declare Function VarPtr Lib _
"vb40032.dll" (Ptr As Any) As Long

Declare Function VarPtrArray Lib _
"vb40032.dll" Alias "VarPtr" _
(Ptr() As Any) As Long

CHANGING ARRAY ATTRIBUTES
Now that you know how to read a
SAFEARRAY structure, you can have some
real fun by modifying it. You can modify
the attributes of a VB array using three
techniques. The first one is to act on the
individual fields of the original SAFEARRAY
structure in memory. For instance, you
can modify the first index to the array—
the value returned by the LBound func-
tion—without redimensioning it:

Dim sa As SAFEARRAY1D
Dim saPtr As Long
'read the SafeArray structure
CopyMemory saPtr, ByVal _

VarPtrArray(psa), 4
CopyMemory sa, ByVal saPtr, Len(sa)
'modify and copy it back to memory
sa.Bounds(0).lLBound = 1
CopyMemory ByVal saPtr, sa, Len(sa)
'at this point psa is one-based
http://www.windx.com
Changing the LBound limit of an array
in this way is safe, and you don’t even
need to undo changes before VB frees the
array and its associated memory. You
can’t modify any other field in the
SAFEARRAY structure without putting
everything back exactly as it was before
VB releases the array. If you fail to cor-
rectly restore the array data, VB releases
a block of memory it didn’t allocate and
you will experience a steady stream of
GPFs when your arrays go out of scope.

The second technique for modifying
array attributes is to have the array vari-
able temporarily point to another
SAFEARRAY structure—either an exist-
ing one that belongs to another array or
one allocated by yourself. In this case,
you must have the descriptor point back
to the original SAFEARRAY structure be-
fore VB destroys the array.

For example, you can modify the
cElements and pvData item of a tempo-
rary array and use it to access the memory
owned by a multidimensional matrix (see
Listing 2 and Figure 2). You can look at the
matrix as if it were a one-dimensional
array, which is often much faster. When
Visual Bas
using this trick, remember that VB matri-
ces are stored one column after the other.

This second approach works flaw-
lessly, but it requires that you dimension
an array—temp() in this case—only to
assign a SAFEARRAY to its descriptor.
You can keep memory overhead to a mini-
mum using one-item arrays, but you can’t
avoid a call to allocation/release routines,
which are relatively slow. To write amaz-
ingly fast routines, avoid this overhead.

With the third technique for handling
SAFEARRAY structures, you declare an
array of proper type, but do not dimen-
sion it at all. Instead, you prepare a suit-
able SAFEARRAY structure and force the
address of this structure into the array
descriptor. You can rewrite the ArrayAdd
routine like this:

Dim temp() As Long
Dim sa As SAFEARRAY1D
With sa

.cDims = 1

.cbElements = 4

.pvData = sa2.pvData

.Bounds(0).cElements = numEls
End With
Private m_fInit As Boolean
Private Const cstrHexPairs As String = _

"000102...DFEFF"
Private m_psaHexPairs(255) As Long

Public Function BinToHex(bytes() As Byte) As String
Dim saForString As SAFEARRAY1D
Dim psaForString() As Long
Dim saForBytes As SAFEARRAY1D
Dim saPtrForBytes As Long
Dim lCount As Long

'Get the safearray data for the passed in array.
'This gives us a fast mechanism to look at the
'dims, lower bound, and element count of the array.
CopyMemory saPtrForBytes, ByVal VarPtrArray(bytes), 4
CopyMemory saForBytes, ByVal saPtrForBytes, _
Len(saForBytes)
With saForBytes

If .cDims <> 1 Then Err.Raise 5
'Normalize the lower bound to 0,
'save calculations in loop
If .Bounds(0).lLbound Then

CopyMemory ByVal UnsignedAdd(_
saPtrForBytes, 20), 0&, 4

End If
'Make sure array of hex values is initialized
If Not m_fInit Then

CopyMemory m_psaHexPairs(0), ByVal _
StrPtr(cstrHexPairs), LenB(cstrHexPairs)

m_fInit = True
End If

'Allocate returned string array directly
'into name of function
BinToHex = String$(.Bounds(0).cElements * 2, 0)
'Set up safearray pointing to string
'we just allocated
With saForString

.cbElements = 4
.cDims = 1

.pvData = StrPtr(BinToHex)
End With
saForString.Bounds(0).cElements = _

.Bounds(0).cElements
CopyMemory ByVal VarPtrArray(psaForString), _

VarPtr(saForString), 4

'Do the actual work to copy the hex bytes across.
lCount = .Bounds(0).cElements
Do While lCount

lCount = lCount - 1
psaForString(lCount) = _

m_psaHexPairs(bytes(lCount))
Loop

'NULL out array pointer
CopyMemory ByVal VarPtrArray(psaForString), 0&, 4
'Restore old lbound
If .Bounds(0).lLbound Then

CopyMemory ByVal UnsignedAdd(_
saPtrForBytes, 20), .Bounds(0).lLbound, 4

End If
End With

End Function

Private Function UnsignedAdd _
(Start As Long, Incr As Long) As Long
' only works with positive increments
If Start And &H80000000 Then 'Start < 0

UnsignedAdd = Start + Incr
ElseIf (Start Or &H80000000) < -Incr Then

UnsignedAdd = Start + Incr
Else

UnsignedAdd = (Start + &H80000000) + _
(Incr + &H80000000)

End If
End Function
Manipulate Numeric Strings. Process strings as if they were numeric arrays to avoid the string routines in the Visual
Basic runtime.LISTING 3
ic Programmer’s Journal OCTOBER 1997 25

CopyMemory ByVal VarPtrArray(temp), _
VarPtr(sa), 4

Before the array goes out of scope, we
must force the descriptor back to null,
because temp() must appear to VB as an
undimensioned array:

CopyMemory ByVal VarPtrArray(temp), _
0&, 4

PROCESS STRINGS FAST
We’ll use a binary-to-hexadecimal conver-
sion routine as a sample (BinToHex). Writ-
ing BinToHex with native string manipula-
tion routines such as Hex$ and the Mid$
statement is easy to code, but it’s unaccept-
ably slow. To make a screaming routine
(ours does more than 5 MB of data per
second on a P6/200), you need to have pure
numeric, rather than string, calculations. To
do hex conversion, you need to visit each
byte, so regardless of the algorithm you use,
you have a loop that takes the majority of
your processing cycles. You can minimize
the code in this loop using SAFEARRAYs.

The first step is to initialize your static
data. A byte has 256 possible values, which
correspond to 256 two-character hex pairs.
Put these in a module-level string constant
to avoid calculating them at run time.
Next, copy this data into a fixed-size
Long array the first time you call BinToHex.
The choice to use a fixed-size array is a
trade-off. It requires some extra memory—
it’s possible to share the memory used by
the string—but eliminates the need for
clean-up code. Use the built-in StrPtr func-
tion (similar to VarPtr) to retrieve a pointer
to the constant string data. Unfortunately,
you can’t declare StrPtr in VB4/32 with-
out creating a type library.

Private Const cstrHexPairs As String = _
"000102…FDFEFF"

Private m_psaHexPairs(255) As Long
Private m_fInit As Boolean
'...
If Not m_fInit Then

CopyMemory m_psaHexPairs(0), _
ByVal StrPtr(cstrHexPairs),
LenB(cstrHexPairs)

m_fInit = True
End If

The Long value in each element of
m_psaHexPairs is the numeric represen-
tation of the corresponding hex pair, so
you have numeric input data. Now set up
a corresponding Long array as a destina-
tion for the hex pair data. Your function
and variable declarations look like this:
Public Function BinToHex(bytes() As _
Byte) As String

Dim saForString As SAFEARRAY1D
Dim psaForString() As Long
Dim saForBytes As SAFEARRAY1D
Dim saPtrForBytes As Long
Dim lCount As Long

Your optimized main loop looks like this:

lCount = saBytes.Bounds(0).cElements
Do While lCount

lCount = lCount - 1
psaForString(lCount) = _

m_psaHexPairs(bytes(lCount))
Loop

Perform two more preparatory steps
before using the loop. Step one is to allocate
the string buffer and link it to the psaForString
array, which lets you write directly to the
memory you’re returning. The second step,
which is less obvious, is to make sure that
the input array has a lower bound of zero,
which eliminates an extra shift calculation
for each pass of the loop. As a prerequisite to
these steps, retrieve information from the
input bytes array using the code shown ear-
lier. saForBytes holds a copy of the
SAFEARRAY descriptor, and saPtrForBytes
is a pointer to the original structure. Allocate
Type BITMAP
bmType As Long
bmWidth As Long
bmHeight As Long
bmWidthBytes As Long
bmPlanes As Integer
bmBitsPixel As Integer
bmBits As Long

End Type

Declare Function GetObjectAPI Lib _
"gdi32" Alias "GetObjectA" (ByVal _
hObject As Long, ByVal nCount As _
Long, lpObject As Any) As Long

Sub SwapColors(pictbox As PictureBox, ByVal color1 _
As Integer, ByVal color2 As Integer)

' these are used to address the pixel using matrices
Dim pict() As Byte

Dim sa As SAFEARRAY2D, bmp As BITMAP
Dim r As Integer, c As Integer, value As Byte

' get bitmap info
GetObjectAPI pictbox.Picture, Len(bmp), bmp
' exit if not a supported bitmap
If bmp.bmPlanes <> 1 Or bmp.bmBitsPixel <> 8 Then

MsgBox " 256-color bitmaps only", vbCritical
Exit Sub

End If

' have the local matrix point to bitmap pixels
With sa
.cbElements = 1
.cDims = 2
.Bounds(0).lLbound = 0
.Bounds(0).cElements = bmp.bmHeight
.Bounds(1).lLbound = 0
.Bounds(1).cElements = _

bmp.bmWidthBytes
.pvData = bmp.bmBits

End With
CopyMemory ByVal VarPtrArray(pict), VarPtr(sa), 4

' swap colors - note that col/row order is inverted
' because VB arrays are stored in column-wise order
For c = 0 To UBound(pict, 1)

For r = 0 To UBound(pict, 2)
value = pict(c, r)
If value = color1 Then

pict(c, r) = color2
ElseIf value = color2 Then

pict(c, r) = color1
End If

Next
Next

' clear the temporary array descriptor
' without destroying the local temporary array
CopyMemory ByVal VarPtrArray(pict), 0&, 4
' inform VB that something has changed
pictbox.Refresh

End Sub
Process Images Cheaply. Use this routine to swap any pair of colors in a 256-color bitmap held in a picture box control, and
as a starting point for building more interesting graphic effects.LISTING 4

M E M O R Y P O I N T E R S
the string directly into the name of the func-
tion instead of a temporary string, to avoid
an extremely expensive extra string assign-
ment at the end of the routine:

BinToHex = String$(saBytes.cElements _
* 2, 0)

With saForString
.cbElements = 4
.cDims = 1
.pvData = StrPtr(BinToHex)
.cElements = saForBytes.cElements

End With
CopyMemory ByVal VarPtrArray(_

psaForString), VarPtr(saForString), 4

To normalize the byte array, use
CopyMemory to write directly to
cElements, which is offset 20 bytes from
saPtrForBytes. Because VB doesn’t have
an unsigned long data type, which is nec-
essary for pointer arithmetic, use the pro-
vided UnsignedAdd function to treat
signed long data as a pointer. Return the
lower bound of the input array to its
original value before leaving BinToHex:
27 OCTOBER 1997 Visual Basic Programmer
If saForBytes.Bounds(0).lLbound Then
CopyMemory ByVal _
UnsignedAdd(saPtrForBytes, 20), _
0&, 4

End If

With error checking at the beginning of
the function, and code to remove the bor-
rowed pointer from psaForString and reset
the lower bound of the input array, you’re
done with your function (see Listing 3). The
amount of setup code in this function is
excessive for manipulating small amounts of
data, but is well worth the effort for large
amounts of data when the loop is processed
thousands of times. Also, the single line that
allocates the string buffer often takes more
time than the rest of the setup code, depend-
ing on the size of the string. This procedure
runs best in native code with bounds check-
ing and integer overflow checking turned off.

MANIPULATE MEMORY FOR IMAGE
PROCESSING
Serious image processing in VB might
seem like an oxymoron, but it’s possible
m(0,0)

m(1,0)

m(2,0)

m(3,0)

m(4,0)

m(0,1)

m(1,1)

m(2,1)

m(3,1)

m(4,1)

m(0,2)

m(1,2)

m(2,2)

m(3,2)

m(4,2)

m(0,3)

m(1,3)

m(2,3)

m(3,3)

m(4,3)

a(0)

a(1)

a(2)

a(3)

a(4)

a(5)

a(6)

a(7)

a(8)

a(9)

a(10)

a(11)

a(12)

a(13)

a(14)

a(15)

a(16)

a(17)

a(18)

a(19)

.Bounds(0).ILBound = 0

.Bounds(0).cElements = 20

.pvData

.cLocks = ??

.cbElements = 4

.fFeatures = ??

.cDims = 1

SAFEARRAY1D

.Bounds(1).ILBound = 0

.Bounds(1).cElements = 4

.Bounds(0).ILBound = 0

.Bounds(0).cElements = 5

.pvData

.cLocks = ??

.cbElements = 4

.fFeatures = ??

.cDims = 2

SAFEARRAY2D

Take a Second Look at Your Matrices. If you can handle the SAFEARRAY
structure, you can access any portion of memory as if it were a native VB array.

Moreover, you can look at an existing multidimensional matrix as if it were a linear array,
which is often more efficient. However, remember that VB matrices are stored one column
after the other.

FIGURE 2
’s Journal http://www.windx.com

Code Online
You can find all the code published in this
issue of VBPJ on The Development Exchange
(DevX) at http://www.windx.com. All the
listings and associated files essential to the
articles are available for free to Registered
members of DevX, in one ZIP file. This ZIP
file is also posted in the Magazine Library of
the VBPJ Forum on CompuServe. DevX Pre-
mier Club members ($20 for six months)
can get each article’s listings in a separate
file, as well as additional code and utilities
for selected articles, plus archives of all
code ever published in VBPJ and Microsoft
Interactive Developer magazines.

Write Faster Apps with
VB Pointers
Locator+ Codes
Listings ZIP file (free Registered Level):
VBPJ1097

 Listings for this article plus a routine to
rotate any bitmap, a super-fast ParseString
routine, and complete programs for
benchmarking string conversion and ro-
tating bitmap routines (subscriber Pre-
mier Level): MC1097P

M E M O R Y P O I N T E R S
with the techniques you’ve learned so far.
After all, an image is nothing more than a
bidimensional array of pixels in memory,
and you now know how to manipulate
this memory efficiently.

Getting the address of the pixels in a
bitmap is easy. Given a bitmap in a picture
box control, you can pass its handle to the
GetObject API—returned by the Picture
property—and fill a BITMAP structure with
the relevant information:

Type BITMAP
bmType As Long
bmWidth As Long
bmHeight As Long
bmWidthBytes As Long
bmPlanes As Integer
bmBitsPixel As Integer
bmBits As Long

End Type
Declare Function GetObjectAPI Lib _

"gdi32” Alias "GetObjectA" _
(ByVal hObject As Long, _
ByVal nCount As Long, _
lpObject As Any) As Long

…
Dim bmp As BITMAP
GetObjectAPI Picture1.Picture, _

Len(bmp), bmp

The fields of interest are bmWidth (the
width of the bitmap in pixels), bmHeight
(its height), bmWidthBytes (the width of
pixel rows, where each row is aligned on a
word boundary), and bmBits (the memory
address of actual pixels). In our example,
we only deal with 256-color bitmaps with
one color plane (bmPlanes field) and eight
bits per pixel (bmBitsPixel field).

The 256-color bitmaps are easy to deal
with because each pixel corresponds to a
byte, which holds the index of the color in
the bitmap’s palette. You can build a suit-
able SAFEARRAY structure and point an
uninitialized array variable at the descriptor:

Dim pict() As Byte, sa As SAFEARRAY2D
With sa

.cbElements = 1

.cDims = 2

.Bounds(0).lLbound = 0

.Bounds(0).cElements = bmp.bmHeight

.Bounds(1).lLbound = 0

.Bounds(1).cElements = bmp.bmWidthBytes

.pvData = bmp.bmBits
End With
CopyMemory ByVal VarPtrArray(pict), _

VarPtr(sa), 4

Finally, you can access individual pix-
els as if they were elements of the pict()
matrix, with one important difference: VB
bidimensional arrays are stored column-
wise, while bitmaps are stored row-wise.
Therefore, we need to swap the usual
row/column indices:
http://www.windx.com
'color of pixel at row 20, column 40
value = pict(40, 20)

Take a look at a complete routine that
swaps a pair of colors in a bitmap, effec-
tively changing all pixels of color1 into
color2, and vice versa (see Listing 4). The
routine is not aware of the actual color of
the pixels it is dealing with; it just sees
numbers in the range 0–255. For more ad-
vanced image processing techniques—
color reduction, for instance—you must
use this value as an index into the bitmap’s
palette to retrieve the real RGB value. We
won’t cover such added intricacies here,
because our primary concern is memory
pointers, not image processing.

Pointers that directly read and write
memory locations offer a huge number
of possible applications, besides the ones
described in this article. However, it helps
to remember that even though you’re
using the data structure that underlies
all VB arrays, using these pointers cheats
VB into doing something it was not de-
signed to do. If you follow our directions
closely, you will end up with robust and
super-fast applications, but don’t forget
to save your work often while you’re
testing and debugging.
Visual Basic Programmer’s Journal OCTOBER 1997 28

	Code

